We study the polynomial approximation of symmetric multivariate functions and of multi-set functions. Specifically, we consider $f(x_1, \dots, x_N)$, where $x_i \in \mathbb{R}^d$, and $f$ is invariant under permutations of its $N$ arguments. We demonstrate how these symmetries can be exploited to improve the cost versus error ratio in a polynomial approximation of the function $f$, and in particular study the dependence of that ratio on $d, N$ and the polynomial degree. These results are then used to construct approximations and prove approximation rates for functions defined on multi-sets where $N$ becomes a parameter of the input.


翻译:我们研究对称多变量函数和多元函数的多元近似值。 具体地说, 我们考虑$f( x_ 1,\ dots, x_N), $x_ i\ in\ mathbb{R ⁇ d$ 和$f$ 在 $N 参数的变换下是无差异的。 我们演示如何利用这些对称来提高函数多元函数多元近值的成本比和误差率, 特别是研究该比值对 $d, N$和多元学位的依赖性。 这些结果被用来构建近似值, 并证明多元函数定义的近似率, 在多元函数中, $成为输入的参数 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员