In high stake applications, active experimentation may be considered too risky and thus data are often collected passively. While in simple cases, such as in bandits, passive and active data collection are similarly effective, the price of passive sampling can be much higher when collecting data from a system with controlled states. The main focus of the current paper is the characterization of this price. For example, when learning in episodic finite state-action Markov decision processes (MDPs) with $\mathrm{S}$ states and $\mathrm{A}$ actions, we show that even with the best (but passively chosen) logging policy, $\Omega(\mathrm{A}^{\min(\mathrm{S}-1, H)}/\varepsilon^2)$ episodes are necessary (and sufficient) to obtain an $\epsilon$-optimal policy, where $H$ is the length of episodes. Note that this shows that the sample complexity blows up exponentially compared to the case of active data collection, a result which is not unexpected, but, as far as we know, have not been published beforehand and perhaps the form of the exact expression is a little surprising. We also extend these results in various directions, such as other criteria or learning in the presence of function approximation, with similar conclusions. A remarkable feature of our result is the sharp characterization of the exponent that appears, which is critical for understanding what makes passive learning hard.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员