Learning new tasks by drawing on prior experience gathered from other (related) tasks is a core property of any intelligent system. Gradient-based meta-learning, especially MAML and its variants, has emerged as a viable solution to accomplish this goal. One problem MAML encounters is its computational and memory burdens needed to compute the meta-gradients. We propose a new first-order variant of MAML that we prove converges to a stationary point of the MAML objective, unlike other first-order variants. We also show that the MAML objective does not satisfy the smoothness assumption assumed in previous works; we show instead that its smoothness constant grows with the norm of the meta-gradient, which theoretically suggests the use of normalized or clipped-gradient methods compared to the plain gradient method used in previous works. We validate our theory on a synthetic experiment.


翻译:暂无翻译

0
下载
关闭预览

相关内容

MAML(Model-Agnostic Meta-Learning)是元学习(Meta learning)最经典的几个算法之一,出自论文《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》。 原文地址:https://arxiv.org/abs/1703.03400
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员