We consider a simple one-way averaging protocol on graphs. Initially, every node of the graph has a value. A node $u$ is chosen uniformly at random and $u$ samples $k$ neighbours $v_1,v_2,\cdots, v_k \in N(u)$ uniformly at random. Then, $u$ averages its value with $v$ as follows: $\xi_u(t+1) = \alpha \xi_u(t) + \frac{(1-\alpha)}{k} \sum_{i=1}^k \xi_{v_i}(t)$ for some $\alpha \in (0,1)$, where $\xi_u(t)$ is the value of node $u$ at time $t$. Note that, in contrast to neighbourhood value balancing, only $u$ changes its value. Hence, the sum (and the average) of the values of all nodes changes over time. Our results are two-fold. First, we show a bound on the convergence time (the time it takes until all values are roughly the same) that is asymptotically tight for some initial assignments of values to the nodes. Our second set of results concerns the ability of this protocol to approximate well the initial average of all values: we bound the probability that the final outcome is significantly away from the initial average. Interestingly, the variance of the outcome does not depend on the graph structure. The proof introduces an interesting generalisation of the duality between coalescing random walks and the voter model.


翻译:我们考虑的是图表上简单的单向平均协议。 最初, 图表的每个节点都有值。 随机选择的节点美元是统一的, 随机选择的节点美元是统一的, 随机选择的是美元样本是美元 $v_ 1,v_2,\cdots, v_k\inN( u) 美元, 任意选择的是美元。 然后, 美元是它的平均值, 以美元计算如下: $xi_ u( t+1) = ALpha\xx_ u( t) +\ frac{( 1- ALpha)\ ( 1 -\ ALpha)\ k}\ sum ⁇ i=1\ k\ rock\ rool_ c_ i} (t), 以美元标点是 $\ kpalpha 。 。 美元的平均值与 相对而言, 美元值的平衡值只有 $u$u 值。 因此, 所有不规则值的数值的数值的数值的数值总平均值值是两重。 首先值, 我们的初值的精度值的精度值是直值的精度值。 。 。 。 在最初结果的精度上, 我们的精度的精度值的精度的精度的精度的精度的精度的精度, 直度的精度, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年2月2日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员