Methods to generate realistic non-stationary demand scenarios are a key component for analyzing and optimizing decision policies in supply chains. Typical forecasting techniques recommended in standard inventory control textbooks consist of some form of exponential smoothing for both the estimates for the mean and standard deviation. We propose and study a class of demand generating processes (DGPs) that yield non-stationary demand scenarios, and that are consistent with SES, meaning that SES yields unbiased estimates when applied to the generated demand scenarios. As demand in typical practical settings is discrete and non-negative, we study consistent DGPs on the non-negative integers, and derive conditions under which the existence of such DGPs can be guaranteed. Our subsequent simulation study gains further insights into the proposed DGP. It demonstrates that from a given initial forecast, our DGPs yields a diverse set of demand scenarios with a wide range of properties. To show the applicability of the DGP, we apply it to generate demand in a standard inventory problem with full backlogging and a positive lead time. We find that appropriate dynamic base-stock levels can be obtained using a new and relatively simple algorithm, and we demonstrate that this algorithm outperforms relevant benchmarks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员