Conventional physics-informed extreme learning machine (PIELM) often faces challenges in solving partial differential equations (PDEs) involving high-frequency and variable-frequency behaviors. To address these challenges, we propose a general Fourier feature physics-informed extreme learning machine (GFF-PIELM). We demonstrate that directly concatenating multiple Fourier feature mappings (FFMs) and an extreme learning machine (ELM) network makes it difficult to determine frequency-related hyperparameters. Fortunately, we find an alternative to establish the GFF-PIELM in three main steps. First, we integrate a variation of FFM into ELM as the Fourier-based activation function, so there is still one hidden layer in the GFF-PIELM framework. Second, we assign a set of frequency coefficients to the hidden neurons, which enables ELM network to capture diverse frequency components of target solutions. Finally, we develop an innovative, straightforward initialization method for these hyperparameters by monitoring the distribution of ELM output weights. GFF-PIELM not only retains the high accuracy, efficiency, and simplicity of the PIELM framework but also inherits the ability of FFMs to effectively handle high-frequency problems. We carry out five case studies with a total of ten numerical examples to highlight the feasibility and validity of the proposed GFF-PIELM, involving high frequency, variable frequency, multi-scale behaviour, irregular boundary and inverse problems. Compared to conventional PIELM, the GFF-PIELM approach significantly improves predictive accuracy without additional cost in training time and architecture complexity. Our results confirm that that PIELM can be extended to solve high-frequency and variable-frequency PDEs with high accuracy, and our initialization strategy may further inspire advances in other physics-informed machine learning (PIML) frameworks.
翻译:暂无翻译