We propose a novel sequential Monte Carlo (SMC) method for sampling from unnormalized target distributions based on a reverse denoising diffusion process. While recent diffusion-based samplers simulate the reverse diffusion using approximate score functions, they can suffer from accumulating errors due to time discretization and imperfect score estimation. In this work, we introduce a principled SMC framework that formalizes diffusion-based samplers as proposals while systematically correcting for their biases. The core idea is to construct informative intermediate target distributions that progressively steer the sampling trajectory toward the final target distribution. Although ideal intermediate targets are intractable, we develop exact approximations using quantities from the score estimation-based proposal, without requiring additional model training or inference overhead. The resulting sampler, termed Reverse Diffusion Sequential Monte Carlo, enables consistent sampling and unbiased estimation of the target's normalization constant under mild conditions. We demonstrate the effectiveness of our method on a range of synthetic targets and real-world Bayesian inference problems.


翻译:我们提出了一种基于反向去噪扩散过程的序列蒙特卡洛(SMC)新方法,用于从未归一化的目标分布中采样。尽管现有的基于扩散的采样器利用近似得分函数模拟反向扩散过程,但它们可能因时间离散化和不完美的得分估计而累积误差。本文中,我们引入了一种原理性的SMC框架,将基于扩散的采样器形式化为提议分布,并系统性地校正其偏差。核心思想是构建信息丰富的中间目标分布,逐步引导采样轨迹趋近最终目标分布。虽然理想的中间目标分布难以精确求解,但我们利用基于得分估计的提议分布中的量值,开发了精确的近似方法,无需额外的模型训练或推理开销。所提出的采样器——称为反向扩散序列蒙特卡洛——在温和条件下能够实现一致性采样,并对目标分布的归一化常数进行无偏估计。我们在多种合成目标分布和实际贝叶斯推断问题上验证了该方法的有效性。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员