Symmetry-informed machine learning can exhibit advantages over machine learning which fails to account for symmetry. In the context of continuous symmetry detection, current state of the art experiments are largely limited to detecting affine transformations. Herein, we outline a computationally efficient framework for discovering infinitesimal generators of multi-parameter group actions which are not generally affine transformations. This framework accommodates the automatic discovery of the number of linearly independent infinitesimal generators. We build upon recent work in continuous symmetry discovery by extending to neural networks and by restricting the symmetry search space to infinitesimal isometries. We also introduce symmetry enforcement of smooth models using vector field regularization, thereby improving model generalization. The notion of vector field similarity is also generalized for non-Euclidean Riemannian metric tensors.


翻译:对称性感知的机器学习相较于未考虑对称性的机器学习展现出显著优势。在连续对称性检测领域,当前最先进的实验主要局限于检测仿射变换。本文提出一种计算高效的框架,用于发现多参数群作用的无穷小生成元,这些生成元通常并非仿射变换。该框架支持自动发现线性无关无穷小生成元的数量。我们基于近期连续对称性发现的研究,将其扩展至神经网络领域,并将对称性搜索空间限制为无穷小等距变换。此外,我们引入基于向量场正则化的光滑模型对称性强制方法,从而提升模型泛化能力。本文还将向量场相似性概念推广至非欧几里得黎曼度量张量情形。

0
下载
关闭预览

相关内容

【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
ICLR 2019 | 基于复杂空间关系旋转的知识表示方法
PaperWeekly
17+阅读 · 2019年7月29日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
ICLR 2019 | 基于复杂空间关系旋转的知识表示方法
PaperWeekly
17+阅读 · 2019年7月29日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员