Zero-shot object navigation in unknown environments presents significant challenges, mainly due to two key limitations: insufficient semantic guidance leads to inefficient exploration, while limited spatial memory resulting from environmental structure causes entrapment in local regions. To address these issues, we propose SSR-ZSON, a spatial-semantic relative zero-shot object navigation method based on the TARE hierarchical exploration framework, integrating a viewpoint generation strategy balancing spatial coverage and semantic density with an LLM-based global guidance mechanism. The performance improvement of the proposed method is due to two key innovations. First, the viewpoint generation strategy prioritizes areas of high semantic density within traversable sub-regions to maximize spatial coverage and minimize invalid exploration. Second, coupled with an LLM-based global guidance mechanism, it assesses semantic associations to direct navigation toward high-value spaces, preventing local entrapment and ensuring efficient exploration. Deployed on hybrid Habitat-Gazebo simulations and physical platforms, SSR-ZSON achieves real-time operation and superior performance. On Matterport3D and Habitat-Matterport3D datasets, it improves the Success Rate(SR) by 18.5\% and 11.2\%, and the Success weighted by Path Length(SPL) by 0.181 and 0.140, respectively, over state-of-the-art methods.
翻译:暂无翻译