This work addresses the problem of distributed computation of linearly separable functions, where a master node with access to $K$ datasets, employs $N$ servers to compute $L$ user-requested functions, each defined over the datasets. Servers are instructed to compute subfunctions of the datasets and must communicate computed outputs to the user, who reconstructs the requested outputs. The central challenge is to reduce the per-server computational load and the communication cost from servers to the user, while ensuring recovery for any possible set of $L$ demanded functions. We here establish the fundamental communication-computation tradeoffs for arbitrary $K$ and $L$, through novel task-assignment and communication strategies that, under the linear-encoding and no-subpacketization assumptions, are proven to be either exactly optimal or within a factor of three from the optimum. In contrast to prior approaches that relied on fixed assignments of tasks -- either disjoint or cyclic assignments -- our key innovation is a nullspace-based design that jointly governs task assignment and server transmissions, ensuring exact decodability for all demands, and attaining optimality over all assignment and delivery methods. To prove this optimality, we here uncover a duality between nullspaces and sparse matrix factorizations, enabling us to recast the distributed computing problem as an equivalent factorization task and derive a sharp information-theoretic converse bound. Building on this, we establish an additional converse that, for the first time, links the communication cost to the covering number from the theory of general covering designs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

DC:Distributed Computing。 Explanation:分布式计算。 Publisher:Springer。 SIT:http://dblp.uni-trier.de/db/journals/dc/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员