Adversarial attacks, particularly \textbf{targeted} transfer-based attacks, can be used to assess the adversarial robustness of large visual-language models (VLMs), allowing for a more thorough examination of potential security flaws before deployment. However, previous transfer-based adversarial attacks incur high costs due to high iteration counts and complex method structure. Furthermore, due to the unnaturalness of adversarial semantics, the generated adversarial examples have low transferability. These issues limit the utility of existing methods for assessing robustness. To address these issues, we propose AdvDiffVLM, which uses diffusion models to generate natural, unrestricted and targeted adversarial examples via score matching. Specifically, AdvDiffVLM uses Adaptive Ensemble Gradient Estimation to modify the score during the diffusion model's reverse generation process, ensuring that the produced adversarial examples have natural adversarial targeted semantics, which improves their transferability. Simultaneously, to improve the quality of adversarial examples, we use the GradCAM-guided Mask method to disperse adversarial semantics throughout the image rather than concentrating them in a single area. Finally, AdvDiffVLM embeds more target semantics into adversarial examples after multiple iterations. Experimental results show that our method generates adversarial examples 5x to 10x faster than state-of-the-art transfer-based adversarial attacks while maintaining higher quality adversarial examples. Furthermore, compared to previous transfer-based adversarial attacks, the adversarial examples generated by our method have better transferability. Notably, AdvDiffVLM can successfully attack a variety of commercial VLMs in a black-box environment, including GPT-4V.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员