A locked $t$-omino tiling is a grid tiling by $t$-ominoes such that, if you remove any pair of tiles, the only way to fill in the remaining space with $t$-ominoes is to use the same two tiles in the exact same configuration as before. We exclude degenerate cases where there is only one tiling overall due to small dimensions. Locked $t$-omino tilings arise as obstructions to widely used political redistricting algorithms in a grid model of redistricting. It is a classic (and straightforward) result that finite grids do not admit locked 2-omino tilings. In this paper, we construct explicit locked 3-, 4-, and 5-omino tilings of grids of various sizes. While 3-omino tilings are plentiful, 4- and 5-omino tilings are remarkably elusive. Using an exhaustive computational search, we completely enumerate all locked tilings on grid sizes up to $20 \times 20$, and all symmetric locked tilings on grid sizes up to $35 \times 35$. We find only a single 4-omino tiling (on the $10 \times 10$ grid) and a small handful of 5-omino tilings (only on $20 \times 20$ grids and larger). Finally, we construct a family of infinite periodic locked $t$-omino tilings with unbounded $t$ for both square and triangular grid lattices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月14日
Arxiv
0+阅读 · 2023年11月13日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年9月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年11月14日
Arxiv
0+阅读 · 2023年11月13日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2020年9月1日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员