Finding a logical formula that separates positive and negative examples given in the form of labeled data items is fundamental in applications such as concept learning, reverse engineering of database queries, generating referring expressions, and entity comparison in knowledge graphs. In this paper, we investigate the existence of a separating formula for data in the presence of an ontology. Both for the ontology language and the separation language, we concentrate on first-order logic and the following important fragments thereof: the description logic $\mathcal{ALCI}$, the guarded fragment, the two-variable fragment, and the guarded negation fragment. For separation, we also consider (unions of) conjunctive queries. We consider several forms of separability that differ in the treatment of negative examples and in whether or not they admit the use of additional helper symbols to achieve separation. Our main results are model-theoretic characterizations of (all variants of) separability, the comparison of the separating power of different languages, and the investigation of the computational complexity of deciding separability.


翻译:找到一个逻辑公式,将以标签数据项目形式给出的正面和负面实例区分开来,对于概念学习、数据库查询的反向工程、参考表达方式和知识图中的实体比较等应用至关重要。在本文中,我们调查在本体学面前存在数据分离公式的情况。对于本体学语言和分离语言,我们集中研究第一阶逻辑及其中以下重要部分:描述逻辑$\mathcal{ALCI}$、保守碎片、两可变碎片和保守的否定碎片。为了分离,我们还考虑(结合)结合查询。我们考虑了在处理负面例子和是否接受使用额外辅助符号实现分离方面有所不同的几种分离形式。我们的主要结果是模型――理论――(所有变式)分离特征、不同语言分离能力的比较以及决定分离的计算复杂性调查。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员