One of the major open problems in complexity theory is to demonstrate an explicit function which requires super logarithmic depth, a.k.a, the $\mathbf{P}$ versus $\mathbf{NC^1}$ problem. The current best depth lower bound is $(3-o(1))\cdot \log n$, and it is widely open how to prove a super-$3\log n$ depth lower bound. Recently Mihajlin and Sofronova (CCC'22) show if considering formulas with restriction on top, we can break the $3\log n$ barrier. Formally, they prove there exist two functions $f:\{0,1\}^n \rightarrow \{0,1\},g:\{0,1\}^n \rightarrow \{0,1\}^n$, such that for any constant $0<\alpha<0.4$ and constant $0<\epsilon<\alpha/2$, their XOR composition $f(g(x)\oplus y)$ is not computable by an AND of $2^{(\alpha-\epsilon)n}$ formulas of size at most $2^{(1-\alpha/2-\epsilon)n}$. This implies a modified version of Andreev function is not computable by any circuit of depth $(3.2-\epsilon)\log n$ with the restriction that top $0.4-\epsilon$ layers only consist of AND gates for any small constant $\epsilon>0$. They ask whether the parameter $\alpha$ can be push up to nearly $1$ thus implying a nearly-$3.5\log n$ depth lower bound. In this paper, we provide a stronger answer to their question. We show there exist two functions $f:\{0,1\}^n \rightarrow \{0,1\},g:\{0,1\}^n \rightarrow \{0,1\}^n$, such that for any constant $0<\alpha<2-o(1)$, their XOR composition $f(g(x)\oplus y)$ is not computable by an AND of $2^{\alpha n}$ formulas of size at most $2^{(1-\alpha/2-o(1))n}$. This implies a $(4-o(1))\log n$ depth lower bound with the restriction that top $2-o(1)$ layers only consist of AND gates. We prove it by observing that one crucial component in Mihajlin and Sofronova's work, called the well-mixed set of functions, can be significantly simplified thus improved. Then with this observation and a more careful analysis, we obtain these nearly tight results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关VIP内容
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员