This paper proposes a new test for the comparison of conditional quantile curves when the outcome of interest, typically a duration, is subject to right censoring. The test can be applied both in the case of two independent samples and for paired data, and can be used for the comparison of quantiles at a fixed quantile level, a finite set of levels or a range of quantile levels. The asymptotic distribution of the proposed test statistics is obtained both under the null hypothesis and under local alternatives. We describe a bootstrap procedure in order to approximate the critical values, and present the results of a simulation study, in which the performance of the tests for small and moderate sample sizes is studied and compared with the behavior of alternative tests. Finally, we apply the proposed tests on a data set concerning diabetic retinopathy.


翻译:本文建议,当感兴趣的结果(通常是一段持续时间)受到适当的审查时,对有条件的量化曲线进行新的比较测试,该测试既适用于两个独立的样本,也适用于配对数据,可用于在固定的量化水平、一定的一组水平或一系列的量化水平上比较。拟议测试统计数据的无症状分布在无效假设和当地替代品下都得到了。我们描述了一种靴套程序,以接近关键值,并介绍了模拟研究的结果,其中研究了中小样本大小试验的进行情况,并与替代测试的行为进行了对比。最后,我们将拟议的测试应用于有关糖尿病复古病的数据集。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月29日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员