The paper aims to study the performance of the amplitude-based model \newline $\widehat{\mathbf x} \in {\rm argmin}_{{\mathbf x}\in \mathbb{C}^d}\sum_{j=1}^m\left(|\langle {\mathbf a}_j,{\mathbf x}\rangle|-b_j\right)^2$, where $b_j:=|\langle {\mathbf a}_j,{\mathbf x}_0\rangle|+\eta_j$ and ${\mathbf x}_0\in \mathbb{C}^d$ is a target signal. The model is raised in phase retrieval as well as in absolute value rectification neural networks. Many efficient algorithms have been developed to solve it in the past decades. {However, there are very few results available regarding the estimation performance in the complex case under noisy conditions.} In this paper, {we present a theoretical guarantee on the amplitude-based model for the noisy complex phase retrieval problem}. Specifically, we show that $\min_{\theta\in[0,2\pi)}\|\widehat{\mathbf x}-\exp(\mathrm{i}\theta)\cdot{\mathbf x}_0\|_2 \lesssim \frac{\|{\mathbf \eta}\|_2}{\sqrt{m}}$ holds with high probability provided the measurement vectors ${\mathbf a}_j\in \mathbb{C}^d,$ $j=1,\ldots,m,$ are {i.i.d.} complex sub-Gaussian random vectors and $m\gtrsim d$. Here ${\mathbf \eta}=(\eta_1,\ldots,\eta_m)\in \mathbb{R}^m$ is the noise vector without any assumption on the distribution. Furthermore, we prove that the reconstruction error is sharp. For the case where the target signal ${\mathbf x}_0\in \mathbb{C}^{d}$ is sparse, we establish a similar result for the nonlinear constrained $\ell_1$ minimization model. { To accomplish this, we leverage a strong version of restricted isometry property for an operator on the space of simultaneous low-rank and sparse matrices.}


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月28日
Arxiv
0+阅读 · 2023年9月28日
VIP会员
相关资讯
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员