Video captioning is a challenging task as it needs to accurately transform visual understanding into natural language description. To date, state-of-the-art methods inadequately model global-local representation across video frames for caption generation, leaving plenty of room for improvement. In this work, we approach the video captioning task from a new perspective and propose a GL-RG framework for video captioning, namely a \textbf{G}lobal-\textbf{L}ocal \textbf{R}epresentation \textbf{G}ranularity. Our GL-RG demonstrates three advantages over the prior efforts: 1) we explicitly exploit extensive visual representations from different video ranges to improve linguistic expression; 2) we devise a novel global-local encoder to produce rich semantic vocabulary to obtain a descriptive granularity of video contents across frames; 3) we develop an incremental training strategy which organizes model learning in an incremental fashion to incur an optimal captioning behavior. Experimental results on the challenging MSR-VTT and MSVD datasets show that our DL-RG outperforms recent state-of-the-art methods by a significant margin. Code is available at \url{https://github.com/ylqi/GL-RG}.


翻译:视频字幕是一项艰巨的任务,因为它需要准确地将视觉理解转换成自然语言描述。 到目前为止,最先进的方法在视频框架中的全局和本地代表性模型不足以在视频框架中为字幕生成提供足够改进的空间。 在这项工作中,我们从新的角度处理视频字幕任务,并提出视频字幕GL-RG框架,即\ textbf{G}G}Lbal- textbf{R}}L}ocal\textb{R}presentation\ textbf{G}ranality。我们的GL-RG展示了三个优势。比先前的努力:(1) 我们明确利用不同视频范围的广泛的视频展示来改进语言表达;(2) 我们设计了一个新的全球-本地编码器,以制作丰富的语义词汇,以获得跨框架视频内容的描述性粒子;(3) 我们制定了一个渐进式培训战略,以渐进式方式组织示范学习,以产生最佳的字幕行为。 挑战性MSR-VTTT和MSVD数据集的实验性结果显示三个优势:(1) 我们的DL-RG超越了最近的州-f-b-ar-ar-ar-ar-rg_r/rg_rg_rg_rg_Q_Qrg_ 一种重要的工具。</s>

1
下载
关闭预览

相关内容

视频描述生成(Video Caption),就是从视频中自动生成一段描述性文字

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
百篇论文纵览大型语言模型最新研究进展
专知会员服务
70+阅读 · 2023年3月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
10+阅读 · 2021年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员