We propose an infinity Laplacian method to address the problem of interpolation on an unstructured point cloud. In doing so, we find the labeling function with the smallest infinity norm of its gradient. By introducing the non-local gradient, the continuous functional is approximated with a discrete form. The discrete problem is convex and can be solved efficiently with the split Bregman method. Experimental results indicate that our approach provides consistent interpolations and the labeling functions obtained are globally smooth, even in the case of extreme low sampling rate. More importantly, convergence of the discrete minimizer to the optimal continuous labeling function is proved using $\Gamma$-convergence and compactness, which guarantees the reliability of the infinity Laplacian method in various potential applications.


翻译:我们提出一个无限拉普拉西亚方法来解决非结构化点云层的内插问题。 在这样做的时候,我们发现其梯度的最小无限规范的标签功能。 通过引入非本地梯度,连续功能与离散的形态相近。 离散问题是一个共和问题,可以通过分裂的布雷格曼方法有效解决。 实验结果表明,我们的方法提供了一致的内插,所获得的标签功能是全球均匀的,即使在取样率极低的情况下也是如此。 更重要的是,离散最小化器与最佳连续标签功能的汇合使用$\Gamma$-converggggence和紧凑性来证明,这就保证了各种潜在应用中无限拉普利西亚方法的可靠性。

0
下载
关闭预览

相关内容

AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员