5G and beyond networks need to provide dynamic and efficient infrastructure management to better adapt to time-varying user behaviors (e.g., user mobility, interference, user traffic and evolution of the network topology). In this paper, we propose to manage the trajectory of Mobile Access Points (MAPs) under all these dynamic constraints with reduced complexity. We first formulate the placement problem to manage MAPs over time. Our solution addresses time-varying user traffic and user mobility through a Multi-Agent Deep Reinforcement Learning (MADRL). To achieve real-time behavior, the proposed solution learns to perform distributed assignment of MAP-user positions and schedules the MAP path among all users without centralized user's clustering feedback. Our solution exploits a dual-attention MADRL model via proximal policy optimization to dynamically move MAPs in 3D. The dual-attention takes into account information from both users and MAPs. The cooperation mechanism of our solution allows to manage different scenarios, without a priory information and without re-training, which significantly reduces complexity.


翻译:5G网络内外的网络需要提供动态和有效的基础设施管理,以更好地适应时间变化的用户行为(例如用户流动性、干扰、用户流量和网络地形的演变)。在本文件中,我们提议在所有这些动态限制下管理移动接入点(MAPs)的轨迹,其复杂性降低。我们首先提出设置问题,以便管理MAPs。我们的解决方案通过多代理深度强化学习(MADRL)解决时间变化的用户流量和用户流动性问题。为了实现实时行为,拟议解决方案学会在不集中用户集群反馈的情况下,在所有用户中进行分布式的MAP用户职位分配,并安排MAP路径。我们的解决办法利用了双关注的MADRL模式,通过准政策优化将MAPs动态地移动到3D。双关注考虑到用户和MAPs提供的信息。我们解决方案的合作机制允许在没有事先信息和再培训的情况下管理不同情景,从而大大降低了复杂性。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员