Despite the subject of non-stationary bandit learning having attracted much recent attention, we have yet to identify a formal definition of non-stationarity that can consistently distinguish non-stationary bandits from stationary ones. Prior work has characterized non-stationary bandits as bandits for which the reward distribution changes over time. We demonstrate that this definition can ambiguously classify the same bandit as both stationary and non-stationary; this ambiguity arises in the existing definition's dependence on the latent sequence of reward distributions. Moreover, the definition has given rise to two widely used notions of regret: the dynamic regret and the weak regret. These notions are not indicative of qualitative agent performance in some bandits. Additionally, this definition of non-stationary bandits has led to the design of agents that explore excessively. We introduce a formal definition of non-stationary bandits that resolves these issues. Our new definition provides a unified approach, applicable seamlessly to both Bayesian and frequentist formulations of bandits. Furthermore, our definition ensures consistent classification of two bandits offering agents indistinguishable experiences, categorizing them as either both stationary or both non-stationary. This advancement provides a more robust framework for non-stationary bandit learning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月16日
Arxiv
15+阅读 · 2023年4月24日
Arxiv
12+阅读 · 2023年1月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年9月16日
Arxiv
15+阅读 · 2023年4月24日
Arxiv
12+阅读 · 2023年1月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员