Early-exit networks are effective solutions for reducing the overall energy consumption and latency of deep learning models by adjusting computation based on the complexity of input data. By incorporating intermediate exit branches into the architecture, they provide less computation for simpler samples, which is particularly beneficial for resource-constrained devices where energy consumption is crucial. However, designing early-exit networks is a challenging and time-consuming process due to the need to balance efficiency and performance. Recent works have utilized Neural Architecture Search (NAS) to design more efficient early-exit networks, aiming to reduce average latency while improving model accuracy by determining the best positions and number of exit branches in the architecture. Another important factor affecting the efficiency and accuracy of early-exit networks is the depth and types of layers in the exit branches. In this paper, we use hardware-aware NAS to strengthen exit branches, considering both accuracy and efficiency during optimization. Our performance evaluation on the CIFAR-10, CIFAR-100, and SVHN datasets demonstrates that our proposed framework, which considers varying depths and layers for exit branches along with adaptive threshold tuning, designs early-exit networks that achieve higher accuracy with the same or lower average number of MACs compared to the state-of-the-art approaches.


翻译:早退网络通过根据输入数据的复杂度调整计算量,是降低深度学习模型整体能耗和延迟的有效解决方案。通过在架构中引入中间退出分支,它们为较简单的样本提供更少的计算,这对于能耗至关重要的资源受限设备尤为有益。然而,设计早退网络是一个具有挑战性且耗时的过程,因为需要平衡效率与性能。近期研究利用神经架构搜索(NAS)来设计更高效的早退网络,旨在通过确定架构中退出分支的最佳位置和数量,在提高模型精度的同时降低平均延迟。影响早退网络效率和精度的另一个重要因素是退出分支的深度和层类型。本文采用硬件感知NAS来增强退出分支,在优化过程中同时考虑精度和效率。我们在CIFAR-10、CIFAR-100和SVHN数据集上的性能评估表明,所提出的框架通过为退出分支考虑不同深度和层类型,并结合自适应阈值调优,设计的早退网络在相同或更低的平均MACs(乘加运算)下,相比现有最优方法实现了更高的精度。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员