A growing class of applications demands \emph{fair ordering} of events, which ensures that events generated earlier are processed before later events. However, achieving such sequencing is challenging due to the inherent errors in clock synchronization: two events at two clients generated close together may have timestamps that cannot be compared confidently. We advocate for an approach that embraces, rather than eliminates, clock synchronization errors. Instead of attempting to remove the error from a timestamp, \systemname{}, our proposed system, leverages a statistical model to compare two noisy timestamps probabilistically by learning per-clock synchronization error distributions. Our preliminary statistical model computes the probability that one event precedes another by only relying on local clocks of clients. This serves as a foundation for a new relation: \emph{likely-happened-before} denoted by $\xrightarrow{p}$ where $p$ represents the probability that an event happened before another. The $\xrightarrow{p}$ relation provides a basis for ordering multiple events which are otherwise considered \emph{concurrent} by Lamport's \emph{happened-before} ($\rightarrow$) relation. We highlight various related challenges including the intransitivity of the $\xrightarrow{p}$ relation as opposed to the transitive $\rightarrow$ relation. We outline several research directions: online fair sequencing, stochastically fair total ordering, and handling byzantine clients.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员