We study the problem of estimating the trace of a matrix $\mathbf{A}$ that can only be accessed through Kronecker-matrix-vector products. That is, for any Kronecker-structured vector $\boldsymbol{\mathrm{x}} = \otimes_{i=1}^k \boldsymbol{\mathrm{x}}_i$, we can compute $\mathbf{A}\boldsymbol{\mathrm{x}}$. We focus on the natural generalization of Hutchinson's Estimator to this setting, proving tight rates for the number of matrix-vector products this estimator needs to find a $(1\pm\varepsilon)$ approximation to the trace of $\mathbf{A}$. We find an exact equation for the variance of the estimator when using a Kronecker of Gaussian vectors, revealing an intimate relationship between Hutchinson's Estimator, the partial trace operator, and the partial transpose operator. Using this equation, we show that when using real vectors, in the worst case, this estimator needs $O(\frac{3^k}{\varepsilon^2})$ products to recover a $(1\pm\varepsilon)$ approximation of the trace of any PSD $\mathbf{A}$, and a matching lower bound for certain PSD $\mathbf{A}$. However, when using complex vectors, this can be exponentially improved to $\Theta(\frac{2^k}{\varepsilon^2})$. We show that Hutchinson's Estimator converges slowest when $\mathbf{A}$ itself also has Kronecker structure. We conclude with some theoretical evidence suggesting that, by combining Hutchinson's Estimator with other techniques, it may be possible to avoid the exponential dependence on $k$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员