We present a highly effective algorithmic approach for generating $\varepsilon$-differentially private synthetic data in a bounded metric space with near-optimal utility guarantees under the 1-Wasserstein distance. In particular, for a dataset $X$ in the hypercube $[0,1]^d$, our algorithm generates synthetic dataset $Y$ such that the expected 1-Wasserstein distance between the empirical measure of $X$ and $Y$ is $O((\varepsilon n)^{-1/d})$ for $d\geq 2$, and is $O(\log^2(\varepsilon n)(\varepsilon n)^{-1})$ for $d=1$. The accuracy guarantee is optimal up to a constant factor for $d\geq 2$, and up to a logarithmic factor for $d=1$. Our algorithm has a fast running time of $O(\varepsilon dn)$ for all $d\geq 1$ and demonstrates improved accuracy compared to the method in (Boedihardjo et al., 2022) for $d\geq 2$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月3日
Arxiv
0+阅读 · 2023年7月1日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年7月3日
Arxiv
0+阅读 · 2023年7月1日
Arxiv
11+阅读 · 2022年9月1日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员