Second-order polynomials generalize classical first-order ones in allowing for additional variables that range over functions rather than values. We are motivated by their applications in higher-order computational complexity theory, extending for example classical classes like P or PSPACE to operators in Analysis [doi:10.1137/S0097539794263452, doi:10.1145/2189778.2189780]. The degree subclassifies ordinary polynomial growth into linear, quadratic, cubic etc. In order to similarly classify second-order polynomials, define their degree to be an 'arctic' first-order polynomial (namely a term/expression over variable $D$ and operations $+$ and $\cdot$ and $\max$). Our normal form and semantic uniqueness results for second-order polynomials assert said second-order degree to be well-defined; and it turns out to transform well under (now two kinds of) polynomial composition. More generally we define the degree of a third-order polynomial to be an arctic second-order polynomial, and establish its transformation under three kinds of composition.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
90+阅读 · 2021年11月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员