A predictive model makes outcome predictions based on some given features, i.e., it estimates the conditional probability of the outcome given a feature vector. In general, a predictive model cannot estimate the causal effect of a feature on the outcome, i.e., how the outcome will change if the feature is changed while keeping the values of other features unchanged. This is because causal effect estimation requires interventional probabilities. However, many real world problems such as personalised decision making, recommendation, and fairness computing, need to know the causal effect of any feature on the outcome for a given instance. This is different from the traditional causal effect estimation problem with a fixed treatment variable. This paper first tackles the challenge of estimating the causal effect of any feature (as the treatment) on the outcome w.r.t. a given instance. The theoretical results naturally link a predictive model to causal effect estimations and imply that a predictive model is causally interpretable when the conditions identified in the paper are satisfied. The paper also reveals the robust property of a causally interpretable model. We use experiments to demonstrate that various types of predictive models, when satisfying the conditions identified in this paper, can estimate the causal effects of features as accurately as state-of-the-art causal effect estimation methods. We also show the potential of such causally interpretable predictive models for robust predictions and personalised decision making.


翻译:一种预测模型可以基于给定的特征进行结果预测,即估计在给定特征向量的条件下结果的条件概率。一般来说,预测模型不能对特征对结果的因果效应进行估计,即在保持其他特征值不变的情况下改变一个特征将如何改变结果。这是因为因果效应估计需要干预概率。然而,许多现实世界中的问题,比如个性化决策、推荐和公平计算,需要知道给定实例中任何特征对结果的因果效应。这与固定处理变量的传统因果效应估计问题不同。本文首先解决了关于如何估计给定实例中任何特征对结果的因果效应的难点。理论结果自然地将预测模型与因果效应估计联系起来,并暗示当本文中所述条件被满足时,预测模型是具有因果解释性的。本文还揭示了具有因果解释性的模型的鲁棒性质。我们通过实验证明,当满足本文中所述条件时,各种类型的预测模型可以像最先进的因果效应估计方法一样准确地估计特征的因果效应。我们还展示了这种因果解释性的预测模型在做出鲁棒预测和个性化决策方面的潜力。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员