The problem of packing smaller objects within a larger object has been of interest since decades. In these problems, in addition to the requirement that the smaller objects must lie completely inside the larger objects, they are expected to not overlap or have minimum overlap with each other. Due to this, the problem of packing turns out to be a non-convex problem, obtaining whose optimal solution is challenging. As such, several heuristic approaches have been used for obtaining sub-optimal solutions in general, and provably optimal solutions for some special instances. In this paper, we propose a novel encoder-decoder architecture consisting of an encoder block, a perturbation block and a decoder block, for packing identical circles within a larger circle. In our approach, the encoder takes the index of a circle to be packed as an input and outputs its center through a normalization layer, the perturbation layer adds controlled perturbations to the center, ensuring that it does not deviate beyond the radius of the smaller circle to be packed, and the decoder takes the perturbed center as input and estimates the index of the intended circle for packing. We parameterize the encoder and decoder by a neural network and optimize it to reduce an error between the decoder's estimated index and the actual index of the circle provided as input to the encoder. The proposed approach can be generalized to pack objects of higher dimensions and different shapes by carefully choosing normalization and perturbation layers. The approach gives a sub-optimal solution and is able to pack smaller objects within a larger object with competitive performance with respect to classical methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员