Authenticated Key Exchange (AKE) between any two entities is one of the most important security protocols available for securing our digital networks and infrastructures. In PQCrypto 2023, Bruckner, Ramacher and Striecks proposed a novel hybrid AKE (HAKE) protocol, dubbed Muckle+, that is particularly useful in large quantum-safe networks consisting of a large number of nodes. Their protocol is hybrid in the sense that it allows key material from conventional and post-quantum primitives, as well as from quantum key distribution, to be incorporated into a single end-to-end shared key. To achieve the desired authentication properties, Muckle+ utilizes post-quantum digital signatures. However, available instantiations of such signatures schemes are not yet efficient enough compared to their post-quantum key-encapsulation mechanism (KEM) counterparts, particularly in large networks with potentially several connections in a short period of time. To mitigate this gap, we propose Muckle# that pushes the efficiency boundaries of currently known HAKE constructions. Muckle# uses post-quantum key-encapsulating mechanisms for implicit authentication inspired by recent works done in the area of Transport Layer Security (TLS) protocols, particularly, in KEMTLS (CCS'20). We port those ideas to the HAKE framework and develop novel proof techniques on the way. Due to our novel KEM-based approach, the resulting protocol has a slightly different message flow compared to prior work that we carefully align with the HAKE framework and which makes our changes to the Muckle+ non-trivial.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员