Instance-aware embeddings predicted by deep neural networks have revolutionized biomedical instance segmentation, but its resource requirements are substantial. Knowledge distillation offers a solution by transferring distilled knowledge from heavy teacher networks to lightweight yet high-performance student networks. However, existing knowledge distillation methods struggle to extract knowledge for distinguishing instances and overlook global relation information. To address these challenges, we propose a graph relation distillation approach for efficient biomedical instance segmentation, which considers three essential types of knowledge: instance-level features, instance relations, and pixel-level boundaries. We introduce two graph distillation schemes deployed at both the intra-image level and the inter-image level: instance graph distillation (IGD) and affinity graph distillation (AGD). IGD constructs a graph representing instance features and relations, transferring these two types of knowledge by enforcing instance graph consistency. AGD constructs an affinity graph representing pixel relations to capture structured knowledge of instance boundaries, transferring boundary-related knowledge by ensuring pixel affinity consistency. Experimental results on a number of biomedical datasets validate the effectiveness of our approach, enabling student models with less than $ 1\%$ parameters and less than $10\%$ inference time while achieving promising performance compared to teacher models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月23日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年2月23日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
10+阅读 · 2021年2月18日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员