Caller ID spoofing is a global industry problem and often acts as a critical enabler for telephone fraud. To address this problem, the Federal Communications Commission (FCC) has mandated telecom providers in the US to implement STIR/SHAKEN, an industry-driven solution based on digital signatures. STIR/SHAKEN relies on a public key infrastructure (PKI) to manage digital certificates, but scaling up this PKI for the global telecom industry is extremely difficult, if not impossible. Furthermore, it only works with IP-based systems (e.g., SIP), leaving the traditional non-IP systems (e.g., SS7) unprotected. So far the alternatives to the STIR/SHAKEN have not been sufficiently studied. In this paper, we propose a PKI-free solution, called Caller ID Verification (CIV). CIV authenticates the caller ID based on a challenge-response process instead of digital signatures, hence requiring no PKI. It supports both IP and non-IP systems. Perhaps counter-intuitively, we show that number spoofing can be leveraged, in conjunction with Dual-Tone Multi-Frequency (DTMF), to efficiently implement the challenge-response process, i.e., using spoofing to fight against spoofing. We implement CIV for VoIP, cellular, and landline phones across heterogeneous networks (SS7/SIP) by only updating the software on the user's phone. This is the first caller ID authentication solution with working prototypes for all three types of telephone systems in the current telecom architecture. Finally, we show how the implementation of CIV can be optimized by integrating it into telecom clouds as a service, which users may subscribe to.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
FAMuS: Frames Across Multiple Sources
Arxiv
0+阅读 · 2023年11月9日
Arxiv
17+阅读 · 2023年9月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员