Heteroskedasticity testing in nonparametric regression is a classic statistical problem with important practical applications, yet fundamental limits are unknown. Adopting a minimax perspective, this article considers the testing problem in the context of an $\alpha$-H\"{o}lder mean and a $\beta$-H\"{o}lder variance function. For $\alpha > 0$ and $\beta \in (0, 1/2)$, the sharp minimax separation rate $n^{-4\alpha} + n^{-4\beta/(4\beta+1)} + n^{-2\beta}$ is established. To achieve the minimax separation rate, a kernel-based statistic using first-order squared differences is developed. Notably, the statistic estimates a proxy rather than a natural quadratic functional (the squared distance between the variance function and its best $L^2$ approximation by a constant) suggested in previous work. The setting where no smoothness is assumed on the variance function is also studied; the variance profile across the design points can be arbitrary. Despite the lack of structure, consistent testing turns out to still be possible by using the Gaussian character of the noise, and the minimax rate is shown to be $n^{-4\alpha} + n^{-1/2}$. Exploiting noise information happens to be a fundamental necessity as consistent testing is impossible if nothing more than zero mean and unit variance is known about the noise distribution. Furthermore, in the setting where the variance function is $\beta$-H\"{o}lder but heteroskedasticity is measured only with respect to the design points, the minimax separation rate is shown to be $n^{-4\alpha} + n^{-\left((1/2) \vee (4\beta/(4\beta+1))\right)}$ when the noise is Gaussian and $n^{-4\alpha} + n^{-4\beta/(4\beta+1)} + n^{-2\beta}$ when the noise distribution is unknown.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月14日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员