In this paper, we propose an online-matching-based model to tackle the two fundamental issues, matching and pricing, existing in a wide range of real-world gig platforms, including ride-hailing (matching riders and drivers), crowdsourcing markets (pairing workers and tasks), and online recommendations (offering items to customers). Our model assumes the arriving distributions of dynamic agents (e.g., riders, workers, and buyers) are accessible in advance, and they can change over time, which is referred to as \emph{Known Heterogeneous Distributions} (KHD). In this paper, we initiate variance analysis for online matching algorithms under KHD. Unlike the popular competitive-ratio (CR) metric, the variance of online algorithms' performance is rarely studied due to inherent technical challenges, though it is well linked to robustness. We focus on two natural parameterized sampling policies, denoted by $\mathsf{ATT}(\gamma)$ and $\mathsf{SAMP}(\gamma)$, which appear as foundational bedrock in online algorithm design. We offer rigorous competitive ratio (CR) and variance analyses for both policies. Specifically, we show that $\mathsf{ATT}(\gamma)$ with $\gamma \in [0,1/2]$ achieves a CR of $\gamma$ and a variance of $\gamma \cdot (1-\gamma) \cdot B$ on the total number of matches with $B$ being the total matching capacity. In contrast, $\mathsf{SAMP}(\gamma)$ with $\gamma \in [0,1]$ accomplishes a CR of $\gamma (1-\gamma)$ and a variance of $\bar{\gamma} (1-\bar{\gamma})\cdot B$ with $\bar{\gamma}=\min(\gamma,1/2)$. All CR and variance analyses are tight and unconditional of any benchmark. As a byproduct, we prove that $\mathsf{ATT}(\gamma=1/2)$ achieves an optimal CR of $1/2$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员