Given a set $P$ of points and a set $U$ of axis-parallel unit squares in the Euclidean plane, a minimum ply cover of $P$ with $U$ is a subset of $U$ that covers $P$ and minimizes the number of squares that share a common intersection, called the minimum ply cover number of $P$ with $U$. Biedl et al. [Comput. Geom., 94:101712, 2020] showed that determining the minimum ply cover number for a set of points by a set of axis-parallel unit squares is NP-hard, and gave a polynomial-time 2-approximation algorithm for instances in which the minimum ply cover number is constant. The question of whether there exists a polynomial-time approximation algorithm remained open when the minimum ply cover number is $\omega(1)$. We settle this open question and present a polynomial-time $(8+\varepsilon)$-approximation algorithm for the general problem, for every fixed $\varepsilon>0$.


翻译:鉴于欧洲加勒比平面的点数和轴-平方单位方形的设定值为美元和美元,以美元计算的最小平面覆盖值是美元的一个子集,包括美元,并尽量减少共同交叉点的平方数,称为最小平面覆盖值为美元。Biedl等人[Comput. Geom.,94:1012,2020]表明,通过一套轴-平面平方形确定一组点的最小平面覆盖值是PP-硬的,对最小平面数字不变的情况给出了多元时间2接近算法。当最小平面覆盖值为美元时,是否存在多元时间近似算法的问题仍然是开放的。我们解决了这个未决问题,并对每个固定的美元/瓦里普西隆0美元的一般问题提出一个聚度时间(8 ⁇ varepsilon)-配价算算法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关论文
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员