When a single pilot is responsible for managing a multi-drone system, the task demands varying levels of autonomy, from direct control of individual UAVs, to group-level coordination, to fully autonomous swarm behaviors for accomplishing high-level tasks. Enabling such flexible interaction requires a framework that supports multiple modes of shared autonomy. As language models continue to improve in reasoning and planning, they provide a natural foundation for such systems, reducing pilot workload by enabling high-level task delegation through intuitive, language-based interfaces. In this paper we present TACOS (Task-Agnostic COordinator of a multi-drone System), a unified framework that enables high-level natural language control of multi-UAV systems through Large Language Models (LLMs). TACOS integrates three key capabilities into a single architecture: a one-to-many natural language interface for intuitive user interaction, an intelligent coordinator for translating user intent into structured task plans, and an autonomous agent that executes plans interacting with the real-world. TACOS allows a LLM to interact with a library of executable APIs, bridging semantic reasoning with real-time multi-robot coordination. We demonstrate the system in real-world multi-drone system and conduct an ablation study to assess the contribution of each module.
翻译:暂无翻译