Process Reward Models (PRMs) enhance reasoning ability of LLMs by providing step-level supervision. However, their widespread adoption is limited due to expensive manual step-level annotation and poor generalization of static training data to novel errors. We introduce Adversarially Trained PRMs (\texttt{APRM}), where a Generator ($G$) learns to produce reasoning errors to deceive a PRM ($R$), while $R$ concurrently learns to detect them. This interaction yields progressively harder negatives for $R$, improving its robustness and generalization to novel errors without requiring manual step-level labels. Averaged across diverse mathematical reasoning benchmarks, \texttt{APRM} improves solver accuracy by $+3.4$ percentage points (pp) over the strongest PRM baseline. \texttt{APRM} achieves gains of $+5.3$ pp on out-of-distribution tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Top
微信扫码咨询专知VIP会员