People with Visual Impairments (PVI) typically recognize objects through haptic perception. Knowing objects and materials before touching is desired by the target users but under-explored in the field of human-centered robotics. To fill this gap, in this work, a wearable vision-based robotic system, MateRobot, is established for PVI to recognize materials and object categories beforehand. To address the computational constraints of mobile platforms, we propose a lightweight yet accurate model MateViT to perform pixel-wise semantic segmentation, simultaneously recognizing both objects and materials. Our methods achieve respective 40.2% and 51.1% of mIoU on COCOStuff-10K and DMS datasets, surpassing the previous method with +5.7% and +7.0% gains. Moreover, on the field test with participants, our wearable system reaches a score of 28 in the NASA-Task Load Index, indicating low cognitive demands and ease of use. Our MateRobot demonstrates the feasibility of recognizing material property through visual cues and offers a promising step towards improving the functionality of wearable robots for PVI. The source code has been made publicly available at https://junweizheng93.github.io/publications/MATERobot/MATERobot.html.


翻译:暂无翻译

0
下载
关闭预览

相关内容

可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对我们的生活、感知带来很大的转变。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员