Gibbard and Satterthwaite have shown that the only single-valued social choice functions (SCFs) that satisfy non-imposition (i.e., the function's range coincides with its codomain) and strategyproofness (i.e., voters are never better off by misrepresenting their preferences) are dictatorships. In this paper, we consider set-valued social choice correspondences (SCCs) that are strategyproof according to Fishburn's preference extension and, in particular, the top cycle, an attractive SCC that returns the maximal elements of the transitive closure of the weak majority relation. Our main theorem implies that, under mild conditions, the top cycle is the only non-imposing strategyproof SCC whose outcome only depends on the quantified pairwise comparisons between alternatives. This result effectively turns the Gibbard-Satterthwaite impossibility into a complete characterization of the top cycle by moving from SCFs to SCCs. It is obtained as a corollary of a more general characterization of strategyproof SCCs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

如今,服务业占据了IT行业的主要部分。公司越来越喜欢专注于其核心专业领域,并使用IT服务来满足其所有外围需求。服务计算是一门新的科学,其目的是研究和更好地理解这个高度流行的产业的基础。它涵盖了利用计算和信息技术来建模、创建、操作和管理业务服务的科学和技术。SCC 2019也将为构建这一重要科学的支柱和塑造服务计算的未来做出贡献。 官网链接:https://conferences.computer.org/services/2019/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月10日
Arxiv
0+阅读 · 2023年8月10日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员