In the past few decades, the life sciences have experienced an unprecedented accumulation of data, ranging from genomic sequences and proteomic profiles to heavy-content imaging, clinical assays, and commercial biological products for research. Traditional static databases have been invaluable in providing standardized and structured information. However, they fall short when it comes to facilitating exploratory data interrogation, real-time query, multidimensional comparison and dynamic visualization. Interactive databases aiming at supporting user-driven data queries and visualization offer promising new avenues for making the best use of the vast and heterogeneous data streams collected in biological research. This article discusses the potential of interactive databases, highlighting the importance of implementing this model in the life sciences, while going through the state-of-the-art in database design, technical choices behind modern data management systems, and emerging needs in multidisciplinary research. Special attention is given to data interrogation strategies, user interface design, and comparative analysis capabilities, along with challenges such as data standardization and scalability in data-heavy applications. Conceptual features for developing interactive databases along diverse life science domains are then presented in the user case of cell line selection for in vitro research to bridge the gap between research data generation, actionable biological insight, subsequent meaningful experimental design, and clinical relevance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
Arxiv
10+阅读 · 2022年3月18日
A Survey on Data Augmentation for Text Classification
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
21+阅读 · 2022年12月20日
Arxiv
10+阅读 · 2022年3月18日
A Survey on Data Augmentation for Text Classification
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员