The ability to integrate task-relevant information into neural representations is a fundamental aspect of both biological and artificial intelligence. To enable theoretical analysis, recent work has examined whether a network learns task-relevant features (rich learning) or resembles a random feature model (or a kernel machine, i.e., lazy learning). However, this simple lazy-versus-rich dichotomy overlooks the possibility of various subtypes of feature learning that emerge from different architectures, learning rules, and data properties. Furthermore, most existing approaches emphasize weight matrices or neural tangent kernels, limiting their applicability to neuroscience because they do not explicitly characterize representations. In this work, we introduce an analysis framework based on representational geometry to study feature learning. Instead of analyzing what are the learned features, we focus on characterizing how task-relevant representational manifolds evolve during the learning process. In both theory and experiment, we find that when a network learns features useful for solving a task, the task-relevant manifolds become increasingly untangled. Moreover, by tracking changes in the underlying manifold geometry, we uncover distinct learning stages throughout training, as well as different learning strategies associated with training hyperparameters, uncovering subtypes of feature learning beyond the lazy-versus-rich dichotomy. Applying our method to neuroscience and machine learning, we gain geometric insights into the structural inductive biases of neural circuits solving cognitive tasks and the mechanisms underlying out-of-distribution generalization in image classification. Our framework provides a novel geometric perspective for understanding and quantifying feature learning in both artificial and biological neural networks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员