We examine whether regime-conditioned generative scenarios combined with a convex CVaR allocator improve portfolio decisions under regime shifts. We present MARCD, a generative-to-decision framework with: (i) a Gaussian HMM to infer latent regimes; (ii) a diffusion generator that produces regime-conditioned scenarios; (iii) signal extraction via blended, shrunk moments; and (iv) a governed CVaR epigraph quadratic program. Contributions: Within the Scenario stage we introduce a tail-weighted diffusion objective that up-weights low-quantile outcomes relevant for drawdowns and a regime-expert (MoE) denoiser whose gate increases with crisis posteriors; both are evaluated end-to-end through the allocator. Under strict walk-forward on liquid multi-asset ETFs (2005-2025), MARCD exhibits stronger scenario calibration and materially smaller drawdowns: MaxDD 9.3% versus 14.1% for BL (a 34% reduction) over 2020-2025 out-of-sample. The framework provides an auditable pipeline with explicit budget, box, and turnover constraints, demonstrating the value of decision-aware generative modeling in finance.


翻译:本研究探讨了体制条件生成情景与凸CVaR分配器相结合,是否能在体制转换下改善投资组合决策。我们提出了MARCD,一个从生成到决策的框架,包含:(i)用于推断潜在体制的高斯隐马尔可夫模型;(ii)生成体制条件情景的扩散生成器;(iii)通过混合收缩矩进行信号提取;以及(iv)受控的CVaR超图二次规划。贡献:在情景生成阶段,我们引入了一种尾部加权扩散目标,该目标对与回撤相关的低分位数结果赋予更高权重,以及一个体制专家(MoE)去噪器,其门控随危机后验概率增加而增强;两者均通过分配器进行端到端评估。在流动性多资产ETF(2005-2025年)的严格前向滚动测试下,MARCD展现出更强的情景校准能力和显著更小的回撤:2020-2025年样本外期间的最大回撤为9.3%,而基准模型BL为14.1%(减少34%)。该框架提供了一个可审计的流程,具有明确的预算、箱型和换手率约束,证明了决策感知生成建模在金融领域的价值。

0
下载
关闭预览

相关内容

UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员