We present new theoretical mechanisms for quantum speedup in the global optimization of nonconvex functions, expanding the scope of quantum advantage beyond traditional tunneling-based explanations. As our main building-block, we demonstrate a rigorous correspondence between the spectral properties of Schr\"{o}dinger operators and the mixing times of classical Langevin diffusion. This correspondence motivates a mechanism for separation on functions with unique global minimum: while quantum algorithms operate on the original potential, classical diffusions correspond to a Schr\"{o}dinger operators with a WKB potential having nearly degenerate global minima. We formalize these ideas by proving that a real-space adiabatic quantum algorithm (RsAA) achieves provably polynomial-time optimization for broad families of nonconvex functions. First, for block-separable functions, we show that RsAA maintains polynomial runtime while known off-the-shelf algorithms require exponential time and structure-aware algorithms exhibit arbitrarily large polynomial runtimes. These results leverage novel non-asymptotic results in semiclassical analysis. Second, we use recent advances in the theory of intrinsic hypercontractivity to demonstrate polynomial runtimes for RsAA on appropriately perturbed strongly convex functions that lack global structure, while off-the-shelf algorithms remain exponentially bottlenecked. In contrast to prior works based on quantum tunneling, these separations do not depend on the geometry of barriers between local minima. Our theoretical claims about classical algorithm runtimes are supported by rigorous analysis and comprehensive numerical benchmarking. These findings establish a rigorous theoretical foundation for quantum advantage in continuous optimization and open new research directions connecting quantum algorithms, stochastic processes, and semiclassical analysis.
翻译:暂无翻译