Identifying patients who benefit from a treatment is a key aspect of personalized medicine, which allows the development of individualized treatment rules (ITRs). Many machine learning methods have been proposed to create such rules. However, to what extent the methods lead to similar ITRs, i.e., recommending the same treatment for the same individuals is unclear. In this work, we compared 22 of the most common approaches in two randomized control trials. Two classes of methods can be distinguished. The first class of methods relies on predicting individualized treatment effects from which an ITR is derived by recommending the treatment evaluated to the individuals with a predicted benefit. In the second class, methods directly estimate the ITR without estimating individualized treatment effects. For each trial, the performance of ITRs was assessed by various metrics, and the pairwise agreement between all ITRs was also calculated. Results showed that the ITRs obtained via the different methods generally had considerable disagreements regarding the patients to be treated. A better concordance was found among akin methods. Overall, when evaluating the performance of ITRs in a validation sample, all methods produced ITRs with limited performance, suggesting a high potential for optimism. For non-parametric methods, this optimism was likely due to overfitting. The different methods do not lead to similar ITRs and are therefore not interchangeable. The choice of the method strongly influences for which patients a certain treatment is recommended, drawing some concerns about their practical use.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员