We study fair mechanisms for the (asymmetric) one-sided allocation problem with m items and n multi-unit demand agents with additive, unit-sum valuations. The symmetric case (m=n), the one-sided matching problem, has been studied extensively for the class of unit demand agents, in particular with respect to the folklore Random Priority mechanism and the Probabilistic Serial mechanism, introduced by Bogomolnaia and Moulin. Under the assumption of unit-sum valuation functions, Christodoulou et al. proved that the price of anarchy is $\Theta(\sqrt{n})$ in the one-sided matching problem for both the Random Priority and Probabilistic Serial mechanisms. Whilst both Random Priority and Probabilistic Serial are ordinal mechanisms, these approximation guarantees are the best possible even for the broader class of cardinal mechanisms. To extend these results to the general setting there are two technical obstacles. One, asymmetry ($m\neq n$) is problematic especially when the number of items is much greater than the number of items. Two, it is necessary to study multi-unit demand agents rather than simply unit demand agents. Our approach is to study a cardinal mechanism variant of Probabilistic Serial, which we call Cardinal Probabilistic Serial. We present structural theorems for this mechanism and use them to obtain bounds on the price of anarchy. Our first main result is an upper bound of $O(\sqrt{n}\cdot \log m)$ on the price of anarchy for the asymmetric one-sided allocation problem with multi-unit demand agents. This upper bound applies to Probabilistic Serial as well and there is a complementary lower bound of $\Omega(\sqrt{n})$ for any fair mechanism. Our second main result is that the price of anarchy degrades with the number of items. Specifically, a logarithmic dependence on the number of items is necessary for both mechanisms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程。
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2021年6月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员