Hyperdimensional Computing (HDC) is an emerging computational paradigm for representing compositional information as high-dimensional vectors, and has a promising potential in applications ranging from machine learning to neuromorphic computing. One of the long-standing challenges in HDC is factoring a compositional representation to its constituent factors, also known as the recovery problem. In this paper we take a novel approach to solve the recovery problem, and propose the use of random linear codes. These codes are subspaces over the Boolean field, and are a well-studied topic in information theory with various applications in digital communication. We begin by showing that hyperdimensional encoding using random linear codes retains favorable properties of the prevalent (ordinary) random codes, and hence HD representations using the two methods have comparable information storage capabilities. We proceed to show that random linear codes offer a rich subcode structure that can be used to form key-value stores, which encapsulate most use cases of HDC. Most importantly, we show that under the framework we develop, random linear codes admit simple recovery algorithms to factor (either bundled or bound) compositional representations. The former relies on constructing certain linear equation systems over the Boolean field, the solution to which reduces the search space dramatically and strictly outperforms exhaustive search in many cases. The latter employs the subspace structure of these codes to achieve provably correct factorization. Both methods are strictly faster than the state-of-the-art resonator networks, often by an order of magnitude. We implemented our techniques in Python using a benchmark software library, and demonstrated promising experimental results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
32+阅读 · 2021年3月29日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
76+阅读 · 2022年3月26日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
32+阅读 · 2021年3月29日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员