Following the wide-spread adoption of machine learning models in real-world applications, the phenomenon of performativity, i.e. model-dependent shifts in the test distribution, becomes increasingly prevalent. Unfortunately, since models are usually trained solely based on samples from the original (unshifted) distribution, this performative shift may lead to decreased test-time performance. In this paper, we study the question of whether and when performative binary classification problems are learnable, via the lens of the classic PAC (Probably Approximately Correct) learning framework. We motivate several performative scenarios, accounting in particular for linear shifts in the label distribution, as well as for more general changes in both the labels and the features. We construct a performative empirical risk function, which depends only on data from the original distribution and on the type performative effect, and is yet an unbiased estimate of the true risk of a classifier on the shifted distribution. Minimizing this notion of performative risk allows us to show that any PAC-learnable hypothesis space in the standard binary classification setting remains PAC-learnable for the considered performative scenarios. We also conduct an extensive experimental evaluation of our performative risk minimization method and showcase benefits on synthetic and real data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
Arxiv
84+阅读 · 2022年7月16日
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
21+阅读 · 2022年12月20日
Arxiv
84+阅读 · 2022年7月16日
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年3月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员