A holobiont is made up of a host organism together with its microbiota. In the context of animal breeding, the holobiont can be viewed as the single unit upon which selection operates. Therefore, integrating microbiota data into genomic prediction models may be a promising approach to improve predictions of phenotypic and genetic values. Nevertheless, there is a paucity of hologenomic transgenerational data to address this hypothesis, and thus to fill this gap, we propose a new simulation framework. Our approach, an R Implementation of a Transgenerational Hologenomic Model-based Simulator (RITHMS) is an open-source package. It builds upon simulated transgenerational genotypes from the Modular Breeding Program Simulator (MoBPS) package and incorporates distinctive characteristics of the microbiota, notably vertical and horizontal transmission as well as modulation due to the environment and host genetics. In addition, RITHMS can account for a variety of selection strategies and is adaptable to different genetic architectures. We simulated transgenerational hologenomic data using RITHMS under a wide variety of scenarios, varying heritability, microbiability, and microbiota transmissibility. We found that simulated data accurately preserved key characteristics across generations, notably microbial diversity metrics, exhibited the expected behavior in terms of correlation between taxa and of modulation of vertical and horizontal transmission, response to environmental effects and the evolution of phenotypic values depending on selection strategy. Our results support the relevance of our simulation framework and illustrate its possible use for building a selection index balancing genetic gain and microbial diversity and for evaluating the impact of partially observed microbiota data. RITHMS is an advanced, flexible tool for generating transgenerational hologenomes under selection that incorporate the complex interplay between genetics, microbiota and environment.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月21日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员