India is home to multiple languages, and training automatic speech recognition (ASR) systems for languages is challenging. Over time, each language has adopted words from other languages, such as English, leading to code-mixing. Most Indian languages also have their own unique scripts, which poses a major limitation in training multilingual and code-switching ASR systems. Inspired by results in text-to-speech synthesis, in this work, we use an in-house rule-based phoneme-level common label set (CLS) representation to train multilingual and code-switching ASR for Indian languages. We propose two end-to-end (E2E) ASR systems. In the first system, the E2E model is trained on the CLS representation, and we use a novel data-driven back-end to recover the native language script. In the second system, we propose a modification to the E2E model, wherein the CLS representation and the native language characters are used simultaneously for training. We show our results on the multilingual and code-switching tasks of the Indic ASR Challenge 2021. Our best results achieve 6% and 5% improvement (approx) in word error rate over the baseline system for the multilingual and code-switching tasks, respectively, on the challenge development data.


翻译:印度拥有多种语言,培训语言自动语音识别系统具有挑战性。随着时间推移,每种语言都采用了英语等其他语言的文字,导致代码混合。大多数印度语言也有自己的独特的脚本,这在培训多语种和代码转换 ASR系统方面是一个重大限制。在文本对语音合成结果的启发下,我们在这个工作中使用内部基于规则的电话级通用标签(CLS)来培训印度语言的多语种和代码转换 ASR(CLS)系统。我们建议使用两种终端对终端(E2E) ASR系统。在第一个系统中,E2E模式是自己独特的脚本,这在培训多语种语言和代码转换系统方面构成了一个独特的限制。我们用新的数据驱动后端来恢复本地语言文字。在第二个系统中,我们建议对E2E模式进行修改,其中CLS代表和本地语言字符同时用于培训。我们展示了我们在Indic ASR挑战的多语种和代码转换任务(E2E)中两个端到终端(E2E) ASR系统,我们的最佳结果在CLS 基准中分别实现了6 % 和5 % 改进了数据。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
319+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
IJCAI2020信息抽取相关论文合集
AINLP
6+阅读 · 2020年6月16日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
ERNIE Tutorial(论文笔记 + 实践指南)
AINLP
30+阅读 · 2019年8月28日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
5+阅读 · 2021年4月16日
Arxiv
5+阅读 · 2019年11月22日
Arxiv
3+阅读 · 2018年8月27日
VIP会员
相关资讯
IJCAI2020信息抽取相关论文合集
AINLP
6+阅读 · 2020年6月16日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
ERNIE Tutorial(论文笔记 + 实践指南)
AINLP
30+阅读 · 2019年8月28日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员