Causal discovery methods aim to determine the causal direction between variables using observational data. Functional causal discovery methods, such as those based on the Linear Non-Gaussian Acyclic Model (LiNGAM), rely on structural and distributional assumptions to infer the causal direction. However, approaches for assessing causal discovery methods' performance as a function of sample size or the impact of assumption violations, inevitable in real-world scenarios, are lacking. To address this need, we propose Causal Direction Detection Rate (CDDR) diagnostic that evaluates whether and to what extent the interaction between assumption violations and sample size affects the ability to identify the hypothesized causal direction. Given a bivariate dataset of size N on a pair of variables, X and Y, CDDR diagnostic is the plotted comparison of the probability of each causal discovery outcome (e.g. X causes Y, Y causes X, or inconclusive) as a function of sample size less than N. We fully develop CDDR diagnostic in a bivariate case and demonstrate its use for two methods, LiNGAM and our new test-based causal discovery approach. We find CDDR diagnostic for the test-based approach to be more informative since it uses a richer set of causal discovery outcomes. Under certain assumptions, we prove that the probability estimates of detecting each possible causal discovery outcome are consistent and asymptotically normal. Through simulations, we study CDDR diagnostic's behavior when linearity and non-Gaussianity assumptions are violated. Additionally, we illustrate CDDR diagnostic on four real datasets, including three for which the causal direction is known.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年5月25日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员