Document centric RAG pipelines usually begin with OCR, followed by brittle heuristics for chunking, table parsing, and layout reconstruction. These text first workflows are costly to maintain, sensitive to small layout shifts, and often lose the spatial cues that contain the answer. Vision first retrieval has emerged as a strong alternative. By operating directly on page images, systems like ColPali and ColQwen preserve structure and reduce pipeline complexity while achieving strong benchmark performance. However, these late interaction models tie retrieval to a specific vision backbone and require storing hundreds of patch embeddings per page, creating high memory overhead and complicating large scale deployment. We introduce VisionRAG, a multimodal retrieval system that is OCR free and model agnostic. VisionRAG indexes documents directly as images, preserving layout, tables, and spatial cues, and builds semantic vectors without committing to a specific extraction. Our three pass pyramid indexing framework creates vectors using global page summaries, section headers, visual hotspots, and fact level cues. These summaries act as lightweight retrieval surrogates. At query time, VisionRAG retrieves the most relevant pages using the pyramid index, then forwards the raw page image encoded as base64 to a multimodal LLM for final question answering. During retrieval, reciprocal rank fusion integrates signals across the pyramid to produce robust ranking. VisionRAG stores only 17 to 27 vectors per page, matching the efficiency of patch based methods while staying flexible across multimodal encoders. On financial document benchmarks, it achieves 0.8051 accuracy at 10 on FinanceBench and 0.9629 recall at 100 on TAT DQA. These results show that OCR free, summary guided multimodal retrieval is a practical and scalable alternative to traditional text extraction pipelines.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Instruction Tuning for Large Language Models: A Survey
Arxiv
15+阅读 · 2023年8月21日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员