Given $\mathbf A \in \mathbb{R}^{n \times n}$ with entries bounded in magnitude by $1$, it is well-known that if $S \subset [n] \times [n]$ is a uniformly random subset of $\tilde{O} (n/\epsilon^2)$ entries, and if ${\mathbf A}_S$ equals $\mathbf A$ on the entries in $S$ and is zero elsewhere, then $\|\mathbf A - \frac{n^2}{s} \cdot {\mathbf A}_S\|_2 \le \epsilon n$ with high probability, where $\|\cdot\|_2$ is the spectral norm. We show that for positive semidefinite (PSD) matrices, no randomness is needed at all in this statement. Namely, there exists a fixed subset $S$ of $\tilde{O} (n/\epsilon^2)$ entries that acts as a universal sparsifier: the above error bound holds simultaneously for every bounded entry PSD matrix $\mathbf A \in \mathbb{R}^{n \times n}$. One can view this result as a significant extension of a Ramanujan expander graph, which sparsifies any bounded entry PSD matrix, not just the all ones matrix. We leverage the existence of such universal sparsifiers to give the first deterministic algorithms for several central problems related to singular value computation that run in faster than matrix multiplication time. We also prove universal sparsification bounds for non-PSD matrices, showing that $\tilde{O} (n/\epsilon^4)$ entries suffices to achieve error $\epsilon \cdot \max(n,\|\mathbf A\|_1)$, where $\|\mathbf A\|_1$ is the trace norm. We prove that this is optimal up to an $\tilde{O} (1/\epsilon^2)$ factor. Finally, we give an improved deterministic spectral approximation algorithm for PSD $\mathbf A$ with entries lying in $\{-1,0,1\}$, which we show is nearly information-theoretically optimal.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员